Notes in 08高阶导数

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 高阶导数定义怎么描述,尝试写出表达式
Published 10/05/2024 高阶导数1\(\left(a^{x}\right)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数2\[\left(e^{x}\right)^{(n)}=\text{______.}\]
Published 10/05/2024 高阶导数3\[\left(e^{a x+b}\right)^{(n)}=\text{______.}\]
Published 10/05/2024 高阶导数4\((\sin x)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数5\([\sin (a x+b)]^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数6\((\cos x)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数7\([\cos (a x+b)]^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数8\(\left(\frac{1}{a x+b}\right)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数9\((\ln x)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数10\([\ln (1+x)]^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数11\([\ln (a x+b)]^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数12\(\left(x^{n}\right)^{(m)}=\text{______.}\)
Published 10/05/2024 高阶导数13\(\left[(a x+b)^{\beta}\right]^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数方法二-莱布尼兹公式-高阶导数15\((u v)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数公式表格 \[ f^{(n)}\left(x_{0}\right)=\text { ____ } =\text { ____ }\] \[\left(a^{x}\right)^{(n)}=\text { ____ }\] …
Published 10/05/2024 高阶导数方法一:归纳法:逐次求导,探索规律,得出通式.尝试用归纳法求 \(y=\sin x\) 的 \(n\) 阶导数
Published 10/05/2024 高阶导数方法二-莱布尼兹公式-高阶导数14\((u \pm v)^{(n)}=\text{______.}\)
Published 10/05/2024 高阶导数方法三-泰勒公式
Published 10/05/2024 设\(y\left( x \right) =\mathrm{arc}\tan x,\text{求}y^{\left( n \right)}\left( 0 \right) \)
Status Last Update Fields