Notes in 02三角函数公式

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 二倍角公式1\(\sin 2 \alpha=\)________.
Published 10/05/2024 二倍角公式2\(\cos 2 \alpha=\)________. 
Published 10/05/2024 二倍角公式3\(\tan 2 \alpha=\)________. 
Published 10/05/2024 二倍角公式4\(\cot 2 \alpha=\)________. 
Published 10/05/2024 二倍角公式表格 \(\sin 2 \alpha=\)____ \(\cos 2 \alpha\)=____=____=____ \(\tan 2 \alpha=\) ____ \(\cot 2 \alpha=\)____
Published 10/05/2024 半角公式1\(\sin ^{2} \frac{\alpha}{2}=\)________. 
Published 10/05/2024 半角公式2\(\cos ^{2} \frac{\alpha}{2}=\)________. 
Published 10/05/2024 半角公式3\(\tan \frac{a}{2}=\)________. 
Published 10/05/2024 半角公式4\(\cot \frac{\alpha}{2}=\)________. 
Published 10/05/2024 半角公式表格 \(\sin ^{2} \frac{\alpha}{2}=\)____ \(\cos ^{2} \frac{\alpha}{2}=\)____\(\tan \frac{\alpha}{2}\) = ____ = ____ = ____\(\cot…
Published 10/05/2024 和差公式1\(\sin (\alpha \pm \beta)=\)________. 
Published 10/05/2024 和差公式2\(\cos (\alpha \pm \beta)=\)________. 
Published 10/05/2024 和差公式3\(\tan (\alpha \pm \beta)=\)________. 
Published 10/05/2024 和差公式4\(\cot (\alpha \pm \beta)=\)________. 
Published 10/05/2024 和差公式公式表格 \(\sin (\alpha \pm \beta\))=____ \(\cos (\alpha \pm \beta\))=____ \(\tan (\alpha \pm \beta)=\)____ \(\cot (\alpha \pm \be…
Published 10/05/2024 积化和差公式1\(\sin \alpha \cos \beta=\)________. 
Published 10/05/2024 积化和差公式2\(\cos \alpha \sin \beta=\)________.
Published 10/05/2024 积化和差公式3\(\cos \alpha \cos \beta=\)________. 
Published 10/05/2024 积化和差公式4\(\sin \alpha \sin \beta=\)________. 
Published 10/05/2024  积化和差公式表格  \(\sin \alpha \cos \beta =\)____ \(\cos \alpha \sin \beta=\)____ \(\cos \alpha \cos \beta=\)____  \(\sin…
Published 10/05/2024 和差化积公式1\(\sin \alpha+\sin \beta=\)________. 
Published 10/05/2024 和差化积公式2\(\sin \alpha-\sin \beta=\)________. 
Published 10/05/2024 和差化积公式3\(\cos \alpha+\cos \beta=\)________. 
Published 10/05/2024 和差化积公式4\(\cos \alpha-\cos \beta=\)________. 
Published 10/05/2024  和差化积公式表格\(\sin \alpha+\sin \beta=\)____ \(\sin \alpha-\sin \beta=\)____ \(\cos \alpha+\cos \beta=\)____  \(\cos \alpha-\cos …
Published 10/05/2024 万能公式\(\text {若 } u=\tan \frac{x}{2}(-\pi<x<\pi) \text {,则 } \sin x=\)________. \(\cos x=\)________. 
Published 10/05/2024 三角恒等式1\(\arctan x+\arctan y=\)_____\(\left(xy<1\right)\)\(\arctan x-\arctan y=\)_____\(\left( xy>-1 \right)\)
Published 10/05/2024 三角恒等式2\(\arcsin x+\arccos x=\)________.\((-1 \leqslant x \leqslant 1)\)
Published 10/05/2024 三角恒等式3\(\arctan x+\operatorname{arccot} x=\)________.\( x\in \left( -\infty \text{,}+\infty \right) \)
Published 10/05/2024 三角恒等式4\(arctan x+arctan \frac{1}{x}=\text{______.}\left( x>0 \right)\)\( arctan x+arctan \frac{1}{x}=\text{______.}\left( x<0 \right)\)
Published 10/05/2024 三角恒等式表格三角恒等式公式表格 \(\arctan x+\arctan y=\)____\(\left(xy<1\right)\) \(\arctan x-\arctan y=\)____\(\left( xy>-1 \right)\) \(\arcsin…
Published 10/05/2024 诱导公式表格                                       角度函数\…
Published 10/05/2024 三角函数基本关系表格 \(\csc \alpha =\)____ \(\sec \alpha =\)____ \(\cot \alpha =\)____ \(\tan \alpha =\)____ \(\cot \alpha =\)____&nbsp…
Published 10/05/2024 诱导公式(4)设α为任意锐角sin(π+α)=________. cos(π+α)=________. tan(π+α)=________. cot(π+α)=________.
Published 10/05/2024 诱导公式(8) 设α为任意锐角sin(-α)=________. cos(-α)=________. tan(-α)=________. cot(-α)=________.
Published 10/05/2024 诱导公式(3) 设α为任意锐角sin(π-α)=________. cos(π-α)=________. tan(π-α)=________. cot(π-α)=________.
Published 10/05/2024 诱导公式(7) 设α为任意锐角sin(2π-α)=________. cos(2π-α)=________. tan(2π-α)=________. cot(2π-α)=________.
Published 10/05/2024 诱导公式(2) 设α为任意锐角sin(π/2+α)=________. cos(π/2+α)=________. tan(π/2+α)=________. cot(π/2+α)=________.
Published 10/05/2024 诱导公式(1) 设α为任意锐角sin(π/2-α)=________. cos(π/2-α)=________. tan(π/2-α)=________. cot(π/2-α)=________.
Published 10/05/2024 诱导公式(6)设α为任意锐角  sin(3π/2+α)=________. cos(3π/2+α)=________. tan(3π/2+α)=________. cot(3π/2+α)=________.
Published 10/05/2024 诱导公式(5) 设α为任意锐角sin(3π/2-α)=________. cos(3π/2-α)=________. tan(3π/2-α)=________. cot(3π/2-α)=________.
Published 10/05/2024 三角函数\(\sin \alpha ,\cos \alpha ,\tan \alpha ,\cot \alpha \)在四个象限符号是?
Published 10/05/2024 特殊的三角函数值汇总表格 \(\alpha \)0。30。45。60。90。120。135。150。180。270。360。0\(\frac{\pi}{6}\)\(\frac{\pi}{4}\)\(\frac{\pi}{3}\)\(\frac{\pi}{2}\)\(\frac{2\pi}{3}\)\…
Published 10/05/2024 三角函数重要公式(一)思维导图
Published 10/05/2024 三角函数公式(二)思维导图
Status Last Update Fields