Notes in Rechnen

To Subscribe, use this Key


Status Last Update Fields
Published 11/22/2023 \(x^{n} \cdot x^{m} =\)
Published 11/22/2023 \(\frac{x^n}{x^m}\)
Published 11/22/2023 \(x^0 =\)
Published 11/22/2023 \((x^n)^m =\)
Published 11/22/2023 \(x^{-n} =\)
Published 11/22/2023 \(log_a (\frac{x}{y}) =\)
Published 11/22/2023 \(log_a(x \cdot y) =\)
Published 11/22/2023 \(log_a(b) \cdot log_b(x) =\)
Published 11/22/2023 \(log_a(a) =\)
Published 11/22/2023 \(log_a(b) \cdot log_b(a) =\)
Published 11/22/2023 Durch \(e\) ausgedrückt, ist \(a^x =\)
Published 11/22/2023 \(\sin(0)\)
Published 11/22/2023 \(\sin(\frac{\pi}{2})\)
Published 11/22/2023 \(sin(\frac{\pi}{4})\)
Published 11/22/2023 \(sin(\pi)\)
Published 11/22/2023 \(sin(\frac{3\pi}{2})\)
Published 11/22/2023 \(sin(\frac{\pi}{6})\)
Published 11/22/2023 \(sin(\frac{\pi}{3})\)
Published 11/22/2023 \(sin(\alpha + \beta)\)
Published 11/22/2023 \(cos ( \alpha + \beta)\)
Published 11/22/2023 \(x^n \cdot y^n =\)
Published 11/22/2023 \(sin^2 + cos^2 =\)
Published 11/22/2023 \(tan =\) [in \(sin \sim cos\)]
Published 11/22/2023 \(sinh(x) =\)
Published 11/22/2023 \(cosh(x)\)
Published 11/22/2023 \(tanh(x)\)
Published 11/22/2023 \(coth(x) =\)
Published 11/22/2023 \(1 rad =\) in \(°\)
Published 11/22/2023 \(2^3\)
Published 11/22/2023 \(2^4\)
Published 11/22/2023 \(2^5\)
Published 11/22/2023 \(2^6\)
Published 11/22/2023 \(2^7\)
Published 11/22/2023 \(2^9\)
Published 11/22/2023 \(2^{10}\)
Published 11/22/2023 \(2^{12}\)
Published 11/22/2023 \(cos(x) \:mit \: \: \mathbb{C}\)
Published 11/22/2023 \(cos(0)\)
Published 11/22/2023 \(cos(\frac{\pi}{2} = \frac{\tau}{4})\)
Published 11/22/2023 \(cos(\frac{\pi}{3})\)
Published 11/22/2023 \(cos(\frac{\pi}{4})\)
Published 11/22/2023 \(cos(\frac{\pi}{6})\)
Published 11/22/2023 \(cos(\frac{3\pi}{2})\)
Published 11/22/2023 \(cos(2\pi)\)
Published 11/22/2023 \(cos(\pi)\)
Published 11/22/2023 \(arcsin(-1)\)
Published 11/22/2023 \( arcsin(1)\)
Published 11/22/2023 \( arcsin(0)\)
Published 11/22/2023 \(arccos(-1) \)
Published 11/22/2023 \(arccos(0) \)
Published 11/22/2023 \( arccos(1)\)
Published 11/22/2023 Additionstheorem \(sinh(x)\) & \(cosh(x)\)
Published 11/22/2023 \(cot =\) [in \(sin \sim cos\)]
Published 11/22/2023 \(\sin(x)\) ist ungerade, dh \(-\sin(\phi)?\)
Published 11/22/2023 \(cos\) ist gerade, dh \(cos(\phi)?\)
Published 11/22/2023 Kartesische \(\Leftrightarrow\) Zylinder Koord.
Published 11/22/2023 Kartesische & Kugel-KoordinatenUmrechnung
Published 11/22/2023 Winkel \(\alpha\) zwischen zwei Vektoren \(\vec a, \vec b\)
Published 11/22/2023 Kartesische Koordinaten \(\Leftrightarrow\) Polarkoordinaten
Published 11/22/2023 \(\sin(\varphi) \) ist ungerade, dh. für \(- \varphi\) ?
Published 11/22/2023 \(cos(\varphi)\) ist gerade, dh. für \(- \varphi\)
Published 11/22/2023 \(i^j\)\(j = 0, 1, 2, 3, 4\)
Published 11/22/2023 Betrag einer komplexen Zahl \(z\)\(\bar z\)...komplex Konjugiertes
Published 11/22/2023 \(z + \bar z =\)
Published 11/22/2023 \(z - \bar z =\)
Published 11/22/2023 Winkel \(\varphi\) einer komplexen Zahl \(z\)?
Published 11/22/2023 Kartesische Form aus Polarkoordinateneiner komplexen Zahl \(z\)Einzelteile und \(z=\)
Published 11/22/2023 Euler'sche Formelmit \(z =\) in Polar
Published 11/22/2023 \(e ^{i \cdot x} = \)als Summe
Published 11/22/2023 \(\cos \varphi\) & \(\sin \varphi\) als komplexe \(e\) Funktion
Published 11/22/2023 Polarform von Komplex Konjugiertem\(\bar z = x - iy\)
Published 11/22/2023 Addition von zwei komplexen Zahlenin Kart. & Polarform\(z_1 = a + ib\)\(z_2 = c + id\)
Published 11/22/2023 Multiplikation zweier komplexer Zahlen \(z_1 = a+ib\) und \(z_2 = c +id\)in Kart. und Polarform
Published 11/22/2023 Division zweier komplexer Zahlen\(z_1, z_2\)in Kart. und Polarform
Published 11/22/2023 Potenzieren einer komplexen Zahl \(z\) um \(n\)in Kart. und Polarform
Published 11/22/2023 Komplexe Exponenten\(z_1 ^{\: \,z_2}= z_1 ^{x_2 + iy_2}\)in Polar
Published 11/22/2023 \(z ^{\frac{1}{n}} = \sqrt[n]{z} = \)
Published 11/22/2023 Trick mit \(\frac{1}{n^2} \leq\)
Published 11/22/2023 \(\lim_{n \rightarrow \infty} \sqrt[n]{n} = \)
Published 11/22/2023 \(\lim_{n \rightarrow \infty}(1+\frac{1}{n})^n =\)
Published 11/22/2023 \(e^x=\)als Taylorreihe
Published 11/22/2023 \(\int_{- \infty}^{+ \infty} e^{-x^2} dx=\)
Published 11/22/2023 \(\cosh(0)\)
Published 11/22/2023 \(\cosh(\ln(2))\)
Published 11/22/2023 \(\sinh(\ln(2))\)
Status Last Update Fields