AC
AnkiCollab
AnkiCollab
Sign in
Explore Decks
Helpful
Join Discord
Download Add-on
Documentation
Support Us
Notes in
Rechnen
To Subscribe, use this Key
friend-colorado-fourteen-bravo-mexico-gee
Status
Last Update
Fields
Published
11/22/2023
\(x^{n} \cdot x^{m} =\)
Published
11/22/2023
\(\frac{x^n}{x^m}\)
Published
11/22/2023
\(x^0 =\)
Published
11/22/2023
\((x^n)^m =\)
Published
11/22/2023
\(x^{-n} =\)
Published
11/22/2023
\(log_a (\frac{x}{y}) =\)
Published
11/22/2023
\(log_a(x \cdot y) =\)
Published
11/22/2023
\(log_a(b) \cdot log_b(x) =\)
Published
11/22/2023
\(log_a(a) =\)
Published
11/22/2023
\(log_a(b) \cdot log_b(a) =\)
Published
11/22/2023
Durch \(e\) ausgedrückt, ist \(a^x =\)
Published
11/22/2023
\(\sin(0)\)
Published
11/22/2023
\(\sin(\frac{\pi}{2})\)
Published
11/22/2023
\(sin(\frac{\pi}{4})\)
Published
11/22/2023
\(sin(\pi)\)
Published
11/22/2023
\(sin(\frac{3\pi}{2})\)
Published
11/22/2023
\(sin(\frac{\pi}{6})\)
Published
11/22/2023
\(sin(\frac{\pi}{3})\)
Published
11/22/2023
\(sin(\alpha + \beta)\)
Published
11/22/2023
\(cos ( \alpha + \beta)\)
Published
11/22/2023
\(x^n \cdot y^n =\)
Published
11/22/2023
\(sin^2 + cos^2 =\)
Published
11/22/2023
\(tan =\) [in \(sin \sim cos\)]
Published
11/22/2023
\(sinh(x) =\)
Published
11/22/2023
\(cosh(x)\)
Published
11/22/2023
\(tanh(x)\)
Published
11/22/2023
\(coth(x) =\)
Published
11/22/2023
\(1 rad =\) in \(°\)
Published
11/22/2023
\(2^3\)
Published
11/22/2023
\(2^4\)
Published
11/22/2023
\(2^5\)
Published
11/22/2023
\(2^6\)
Published
11/22/2023
\(2^7\)
Published
11/22/2023
\(2^9\)
Published
11/22/2023
\(2^{10}\)
Published
11/22/2023
\(2^{12}\)
Published
11/22/2023
\(cos(x) \:mit \: \: \mathbb{C}\)
Published
11/22/2023
\(cos(0)\)
Published
11/22/2023
\(cos(\frac{\pi}{2} = \frac{\tau}{4})\)
Published
11/22/2023
\(cos(\frac{\pi}{3})\)
Published
11/22/2023
\(cos(\frac{\pi}{4})\)
Published
11/22/2023
\(cos(\frac{\pi}{6})\)
Published
11/22/2023
\(cos(\frac{3\pi}{2})\)
Published
11/22/2023
\(cos(2\pi)\)
Published
11/22/2023
\(cos(\pi)\)
Published
11/22/2023
\(arcsin(-1)\)
Published
11/22/2023
\( arcsin(1)\)
Published
11/22/2023
\( arcsin(0)\)
Published
11/22/2023
\(arccos(-1) \)
Published
11/22/2023
\(arccos(0) \)
Published
11/22/2023
\( arccos(1)\)
Published
11/22/2023
Additionstheorem \(sinh(x)\) & \(cosh(x)\)
Published
11/22/2023
\(cot =\) [in \(sin \sim cos\)]
Published
11/22/2023
\(\sin(x)\) ist ungerade, dh \(-\sin(\phi)?\)
Published
11/22/2023
\(cos\) ist gerade, dh \(cos(\phi)?\)
Published
11/22/2023
Kartesische \(\Leftrightarrow\) Zylinder Koord.
Published
11/22/2023
Kartesische & Kugel-KoordinatenUmrechnung
Published
11/22/2023
Winkel \(\alpha\) zwischen zwei Vektoren \(\vec a, \vec b\)
Published
11/22/2023
Kartesische Koordinaten \(\Leftrightarrow\) Polarkoordinaten
Published
11/22/2023
\(\sin(\varphi) \) ist ungerade, dh. für \(- \varphi\) ?
Published
11/22/2023
\(cos(\varphi)\) ist gerade, dh. für \(- \varphi\)
Published
11/22/2023
\(i^j\)\(j = 0, 1, 2, 3, 4\)
Published
11/22/2023
Betrag einer komplexen Zahl \(z\)\(\bar z\)...komplex Konjugiertes
Published
11/22/2023
\(z + \bar z =\)
Published
11/22/2023
\(z - \bar z =\)
Published
11/22/2023
Winkel \(\varphi\) einer komplexen Zahl \(z\)?
Published
11/22/2023
Kartesische Form aus Polarkoordinateneiner komplexen Zahl \(z\)Einzelteile und \(z=\)
Published
11/22/2023
Euler'sche Formelmit \(z =\) in Polar
Published
11/22/2023
\(e ^{i \cdot x} = \)als Summe
Published
11/22/2023
\(\cos \varphi\) & \(\sin \varphi\) als komplexe \(e\) Funktion
Published
11/22/2023
Polarform von Komplex Konjugiertem\(\bar z = x - iy\)
Published
11/22/2023
Addition von zwei komplexen Zahlenin Kart. & Polarform\(z_1 = a + ib\)\(z_2 = c + id\)
Published
11/22/2023
Multiplikation zweier komplexer Zahlen \(z_1 = a+ib\) und \(z_2 = c +id\)in Kart. und Polarform
Published
11/22/2023
Division zweier komplexer Zahlen\(z_1, z_2\)in Kart. und Polarform
Published
11/22/2023
Potenzieren einer komplexen Zahl \(z\) um \(n\)in Kart. und Polarform
Published
11/22/2023
Komplexe Exponenten\(z_1 ^{\: \,z_2}= z_1 ^{x_2 + iy_2}\)in Polar
Published
11/22/2023
\(z ^{\frac{1}{n}} = \sqrt[n]{z} = \)
Published
11/22/2023
Trick mit \(\frac{1}{n^2} \leq\)
Published
11/22/2023
\(\lim_{n \rightarrow \infty} \sqrt[n]{n} = \)
Published
11/22/2023
\(\lim_{n \rightarrow \infty}(1+\frac{1}{n})^n =\)
Published
11/22/2023
\(e^x=\)als Taylorreihe
Published
11/22/2023
\(\int_{- \infty}^{+ \infty} e^{-x^2} dx=\)
Published
11/22/2023
\(\cosh(0)\)
Published
11/22/2023
\(\cosh(\ln(2))\)
Published
11/22/2023
\(\sinh(\ln(2))\)
Status
Last Update
Fields