Notes in 04无穷小

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 尝试描述无穷小的概念
Published 10/05/2024 高阶无穷小\(\text { 设 } \lim \alpha(x)=0, \lim \beta(x)=0 \text {. }\text { 若 } \lim \frac{\beta(x)}{\alpha(x)}=\text{______},\beta(x)=o(\alpha(x))\)
Published 10/05/2024 同阶无穷小\(\text { 设 } \lim \alpha(x)=0, \lim \beta(x)=0 \text {. }\text { 若 } \lim \frac{\beta(x)}{\alpha(x)}=\text{______},\alpha \left( x \right) ,\bet…
Published 10/05/2024 等价无穷小\(\text { 设 } \lim \alpha(x)=0, \lim \beta(x)=0 \text {. }\text { 若 } \lim \frac{\beta(x)}{\alpha(x)}=\text{______},\alpha(x) \sim \beta(x)\)
Published 10/05/2024 无穷小的阶\(\text { 设 } \lim \alpha(x)=0, \lim \beta(x)=0 \text {. }\text {  若 } \lim \frac{\beta(x)}{[\alpha(x)]^{k}}=\text{______},\)称 \(\beta(x)\) …
Published 10/05/2024 有限个无穷小的和仍是________.
Published 10/05/2024 有限个无穷小的积仍是________.
Published 10/05/2024 无穷小量与有界量的积仍是________.
Published 10/05/2024 解决无穷小比阶题目的方法有哪些
Published 10/05/2024 无穷小阶的运算设 \( m, n \) 为正整数,则 a. \( o\left(x^{m}\right) \pm o\left(x^{n}\right)=o\left(\text{______}\right), l=\min \{m, n\} \) b. \( o\left(x^{m}\right)…
Published 10/05/2024 无穷小的思维导图
Published 10/05/2024 低阶无穷小\(\text{设}\lim \alpha (x)=0,\lim \beta (x)=0,\text{若}\lim \frac{\beta (x)}{\alpha (x)}=\text{______},\text{则称}\beta (x)\text{是}\alpha (x)\text{的低…
Status Last Update Fields