Notes in Trigo

To Subscribe, use this Key


Status Last Update Fields
Published 12/02/2024 [$$]\cos(a+b)[/$$]
Published 12/02/2024 [$$]\sin(a+b)[/$$]
Published 12/02/2024 [$$]\sin(p) + \sin(q)[/$$]
Published 12/02/2024 [$$]\cos(p) + \cos(q)[/$$]
Published 12/02/2024 [$$]\cos(2x)[/$$]
Published 12/02/2024 [$$]\cos^2(x) - \sin^2(x)[/$$]
Published 12/02/2024 [$$]2 \cos^2(x) - 1[/$$]
Published 12/02/2024 [$$]1 - 2 \sin^2(x)[/$$]
Published 12/02/2024 [$$]\sin(2x)[/$$]
Published 12/02/2024 [$$]\cos(a)\cdot\cos(b)[/$$]
Published 12/02/2024 [$$]\sin(a) \cdot \sin(b)[/$$]
Published 12/02/2024 [$$]\sin(a) \cdot \cos(b)[/$$]
Published 12/02/2024 [$$]\cos^2(x)[/$$]
Published 12/02/2024 [$$]\sin^2(x)[/$$]
Published 12/02/2024 [$$]\tan'(x)[/$$]
Published 12/02/2024 [$$]\tan(a+b)[/$$]
Published 12/02/2024 [$$]\text{Primitive de } tan(t)[/$$]
Published 12/02/2024 [$$]\tan(t) \text{ en fonction de } u = \tan\left(\frac{t}{2}\right)[/$$]
Published 12/02/2024 [$$]\sin(t) \text{ en fonction de } u = \tan\left(\frac{t}{2}\right)[/$$]
Published 12/02/2024 [$$]\cos(t) \text{ en fonction de } u = \tan\left(\frac{t}{2}\right)[/$$]
Published 12/02/2024 [latex]Primitive de $x \mapsto \frac{1}{\sqrt{a^2 - x^2}}$[/latex]
Published 12/02/2024 [$$]\cos\left(x + \frac{\pi}{2}\right)[/$$]
Published 12/02/2024 [$$]\cos\left(\frac{\pi}{2} - x\right)[/$$]
Published 12/02/2024 [$$]\sin\left(\frac{\pi}{2} - x\right)[/$$]
Published 12/02/2024 [$$]\sin\left(x+\frac{\pi}{2}\right)[/$$]
Published 12/02/2024 [$$]\cos\left(x + \pi\right)[/$$]
Published 12/02/2024 [$$]\sin\left(x + \pi\right)[/$$]
Published 12/02/2024 [$$]\cos\left(\pi-x\right)[/$$]
Published 12/02/2024 [$$]\sin\left(\pi-x\right)[/$$]
Published 12/02/2024 [$$]\cot'(x)[/$$]
Status Last Update Fields