Notes in 01导数定义(性质证明)

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 尝试描述一下导数定义,并写出导数定义的增量型表达式,说明函数在一点可导的条件,不可导的条件
Published 10/05/2024 左导数,右导数定义怎么描述,尝试写出对应的表达式
Published 10/05/2024 函数可导的充要条件是______.
Published 10/05/2024 导数的几何意义为: 若 \(y=f(x)\) 在点 \(x_0\)______, 则曲线 \(y=f(x)\) 在点 \(\left(x_0, f\left(x_0\right)\right)\) 处有_____, 且切线的斜率为______.
Published 10/05/2024 设 \(y=f(x)\) 在 \(x_{0}\) 处可导, \(y=g(x)\) 在 \(x_{0}\) 处连续但不可导, 则函数 \(F(x)=f(x) \cdot g(x)\) 在 \(x_{0}\) 处可导的充要条件是_____.【选自李林高数讲义】
Published 10/05/2024 设\(f(x)\)在\(x_{0}\)处可导,则(1) 当 \(f\left(x_{0}\right) \neq 0\) 时, \(y=|f(x)|\) 在 \(x_{0}\) 处_____.\(\text{且}\left. \left. \left[ \left| f\left( x \right…
Published 10/05/2024 设 \(f(x)=\left(x-x_{0}\right)^{k}\left|x-x_{0}\right|\), 则(1) 当 \(k=0\) 时, \(f(x)=\left|x-x_{0}\right|\) 在 \(x_{0}\) 处_____.(2) 当 \(k=1\) 时, \(f(…
Published 10/05/2024 \(\text {  设 } f(x) \text { 在 } x_{0} \text { 处连续, 且 } f\left(x_{0}\right) \neq 0 \text {, 则 }|f(x)| \text { 在 } x_{0} \text { 处可导 } \Leftrightar…
Published 10/05/2024  证明:(1)若 \(f(x)\) 是可导的偶函数, 则 \(f^{\prime}(x)\) 是奇函数;(2) 若 \(f(x)\) 是可导的奇函数,则 \(f^{\prime}(x)\) 是偶函数.【选自张宇基础30讲】
Published 10/05/2024 证明:若 \(f(x)\) 是可导的周期为 \(T\) 的周期函数,则 \(f^{\prime}(x)\) 也是以 \(T\) 为周期的周期函数.【选自张宇基础30讲】
Published 10/05/2024 \(\text { 设 } f(x)=\left\{\begin{array}{cc}x^{\alpha} \sin \left(\frac{1}{x^{\beta}}\right)\left(\text { 或 } x^{\alpha} \cos \left(\frac{1}{x^{\beta}}…
Published 10/05/2024 \(\text { 设 } F(x)=\left\{\begin{array}{cl}f(x), & x \leqslant x_{0}, \\a\left(x-x_{0}\right)^{2}+b\left(x-x_{0}\right)+c, & x>x_{0} .\end{…
Published 10/05/2024 函数可导一定连续吗?函数连续能推出可导呢?
Published 10/05/2024 \(\underset{\Delta x \rightarrow 0}{\lim} \frac{f\left(x_{0}+\alpha \Delta x\right)-f\left(x_{0}+\beta \Delta x\right)}{\Delta x}(\alpha, \beta \text …
Published 10/05/2024 已知函数\(y=\sqrt[3]{x^{2}} \sin x\),求\(y'\left( x \right)\)【选自李正元复习全书-利用导数定义求导数】
Published 10/05/2024 \(f\left( x \right) \text{连续,若}\underset{x\rightarrow a}{\lim}\frac{f\left( x \right) -b}{x-a}=A,\text{那么}f\left( a \right) =\text{_____,}f^{'}\left( …
Published 10/05/2024 \(\text { 【例】设 } f(x)=\mathrm{e}^{x^{\frac{2}{3}}}-1-x^{\frac{2}{3}} \text {, 求 } f^{\prime}(0) \text {. }\)【选自李林高数讲义】
Published 10/05/2024 函数n阶可导和函数n-1阶数连续可导之间的关系【选自杨超139高分题库】
Published 10/05/2024 导数思维导图
Published 10/05/2024 导数的几何意义1.曲线 \(y=f(x)\) 在点 \(M\left(x_{0}, f\left(x_{0}\right)\right)\) 处的切线方程为 \(y-f\left(x_{0}\right)=\text{______}\).2. 曲线 \(y=f(x)\) 在点 \(M\left(x_…
Published 10/05/2024 \(f\left( x \right) \text{在}x_0\text{处连续}\begin{array}{c}\text{______}\\  \text{______}\\\end{array}f\left( x \right) \text{在}|x_0|\text{处必连续}\)
Status Last Update Fields