Notes in 01极限有理运算法则

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 加减型\(\text { 若 } \lim f(x)=A, \lim g(x)=B \text {, 则 }\)\(\begin{aligned} &\lim [f(x) \pm g(x)]=\text{______.} \\ \end{aligned}\)
Published 10/05/2024 乘法型若 \(\lim f(x)=A, \lim g(x)=B\), 则\(\begin{aligned} &\lim [f(x) \cdot g(x)]=\text{______.} \end{aligned}\)
Published 10/05/2024 除法型\(\text { 若 } \lim f(x)=A, \lim g(x)=B \text {, 则 }\)\(\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\text{______.}\)
Published 10/05/2024 指数型\(\text { 若 } \lim f(x)=A, \lim g(x)=B \text {, 则 }\)\(\lim f\left( x \right) ^{g\left( x \right)}=\text{______.}\)
Published 10/05/2024 有理运算法则推论1若\(\text {   } \lim f(x)=A \neq 0 \text {, 则 }\)\(\lim f(x) g(x)=\text{______,}\)\(\lim \frac{g(x)}{f(x)}=\text{______.}\)
Published 10/05/2024 有理运算法则推论2\(\text {  若 } \lim \frac{f(x)}{g(x)} \text { 存在, 且 } \lim g(x)=0 \text {, 则 } \lim f(x)=\text{______.}\)
Published 10/05/2024 有理运算法则推论3\(\text { 若 } \lim \frac{f(x)}{g(x)}=A \neq 0 \text {, 且 } \lim f(x)=0 \text {, 则 } \lim g(x)=\text{______.}\)
Published 10/05/2024 有理运算法则注解1\(\text {  若 } \lim f(x) \text { 存在, } \lim g(x) \text { 不存在, 则 } \lim [f(x) \pm g(x)]\text{______.}\)
Published 10/05/2024 有理运算法则注解2\(\text { 若 } \lim f(x) \text { 和 } \lim g(x) \text { 都不存在, 则 } \lim [f(x) \pm g(x)]\text{______.}\)
Published 10/05/2024 利用有理运算法则求极限(汇总)\(\text { 若 } \lim f(x)=A, \lim g(x)=B \text {, 则 }\)\(\begin{aligned}&\lim [f(x) \pm g(x)]=\text{______.} \\&\lim [f(x) \cdot …
Status Last Update Fields