Notes in 01多元微分学基本概念

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 二重极限的定义如何描述?
Published 10/05/2024 多元函数连续的定义,多元函数连续的有界性,最值性,介值性怎么描述(类比一元函数)
Published 10/05/2024 偏导数的定义\(f_{x}^{\prime}\left(x_{0}, y_{0}\right)=\text{______}\)\(f_{y}^{\prime}\left(x_{0}, y_{0}\right)=\text{______}\)
Published 10/05/2024 偏导数的几何意义(了解)
Published 10/05/2024 高阶偏导数定义\(\text { 设 } z=f(x, y) \text {, 则 }\)\(\frac{\partial^{2} z}{\partial x^{2}}=\text{______.}\)\(\frac{\partial^{2} z}{\partial x \partial y}=\t…
Published 10/05/2024 定理 如果函数 \(z=f(x, y)\) 的两个二阶混合偏导数 \(f_{x y}^{\prime \prime}(x, y)\) 及 \(f_{y x}^{\prime \prime}(x, y)\) 在区域 \(D\) 内 连续,则在区域 \(D\) 内恒有_____.
Published 10/05/2024 尝试描述可微,全微分的定义,全微分的等价命题
Published 10/05/2024 可微性判定的必要条件
Published 10/05/2024 可微性充分条件
Published 10/05/2024 可微性判定的充分条件-用定义判定
Published 10/05/2024 全微分的计算若 \(f(x, y)\) 可微, 则 \(\mathrm{d} z=\text{______}\)
Published 10/05/2024 一元函数,二元函数的连续,可导,可微的关系
Published 10/05/2024 隐函数存在定理设 \( F(x, y, z)=0 \) 在 \( \left(x_{0}, y_{0}, z_{0}\right) \) 的某个邻域内满足:(1) \( F\left(x_{0}, y_{0}, z_{0}\right)=0 \);(2) \( F_{x}^{\prime}, F_{…
Status Last Update Fields