Notes in MATH4307 - Topics in Algebra and Number Theory

To Subscribe, use this Key


Status Last Update Fields
Published 10/24/2024 Let \(G\) be a group and \(X\) be a set. Recall the definition of a group action of \(G\) on \(X\) (denoted&nb…
Published 10/24/2024 How can I write the two conditions for a group action using nicer notation?
Published 10/24/2024 How can I view a group action \(G \curvearrowright X\) as a homomorphism \(G \to \mathrm{Sym}(X)\)?
Published 10/24/2024 What is a \(G\)-set?
Published 10/24/2024 What is a \(G\)-module?
Published 10/24/2024 What is a representation?
Published 10/24/2024 Let \(G\) be a group. Recall the definition of the group algebra of \(G\), denoted \(\mathbb{C} [G]\)
Published 10/24/2024 Recall the form of elements on \(\mathbb{C}[G]\)
Published 10/24/2024 Recall addition and multiplication on \(\mathbb{C}[G]\)
Published 10/24/2024 Let \(G\) be a group. Recall the left-regular representation of \(G\)
Published 10/24/2024 Recall the definition of the symmetric group \(S_n\)
Published 10/24/2024 Recall the definition for a group action to be faithful
Published 10/24/2024 Recall the definition for a group action to be free
Published 10/24/2024 Recall the definition of the stabilizer group \(G_x\)
Published 10/24/2024 Recall the orbit of \(x\), denoted \(G \cdot x \)
Published 10/24/2024 Recall the definition for a group action to be transitive
Published 10/24/2024 Recall the Orbit-Stabilizer theorem
Published 10/24/2024 Recall Burnside's Lemma
Published 10/24/2024 What does \(X^g\) mean for some \(G \curvearrowright X\) and \(g \in G\)?
Published 10/24/2024 What does \(X/G\) mean for \(G \curvearrowright X\)?
Published 10/24/2024 What does it mean for a homomorphism between \(G\)-modules, \(\varphi:V\to W\), to be \(G\) linear?
Published 10/24/2024 How can I represent \(\rho : G \to GL(V)\) as a matrix if I have \(\{b_1,\dots,b_n\}\) as a basis for \(V\)?
Published 10/24/2024 When is a rep \(\rho\) faithful?
Published 10/24/2024 Two reps \(\rho : G \to GL(V)\) and \(\tau: G \to GL(W)\) are equivalent if there exists an {{c1::isomorphism of vector spaces}}&n…
Published 10/24/2024 When are two matrix reps \(\rho: G \to GL(n, \mathbb{K})\), \(\tau: G \to GL(m, \mathbb{K})\) equivalent?
Published 10/24/2024 How can I write \(|G|\) in terms of the conjugacy classes and the centralisers?
Published 10/24/2024 What is the defining rep/permutation rep of \(S_n\)?
Published 10/24/2024 Let \(V\) be a \(G\)-module. Recall the definition of a submodule of \(V\).
Published 10/24/2024 Let \(V\) be a \(G\)-module. Recall the definition of a trivial submodule of \(V\).
Published 10/24/2024 Let \(V\) be a \(G\)-module. Recall the definition of a proper submodule of \(V\).
Published 10/24/2024 Let \(V\) be a \(G\)-module. Recall the definition of \(V\) being reducible.
Published 10/24/2024 Recall the definition of simple/irreducible module
Published 10/24/2024 Let \(V\) be a \(G\)-module. Recall the definition of a \(G\)-invariant inner product on \(V\)
Published 10/24/2024 Let \(W\) be a submodule of \(V\) that has an inner product. Define \(W^\perp\).
Published 10/24/2024 If \(W\) is a submodule of \(V\), what can we say about \(W^\perp\)?
Published 10/24/2024 Recall the definition of a \(G\)-module \(V\) to be semisimple/completely reducible.
Published 10/24/2024 Recall Maschke's theorem
Published 10/24/2024 Recall part 1 of Schur's lemma
Published 10/24/2024 Let \(V,W\) be \(G\)-modules such that \(V\) is irreducible. Then \({{c1::\mathrm{Hom}_G(V,W) = 0}} \iff\){{c2::there do…
Published 10/24/2024 Recall part 2 of Schur's lemma (identity map)
Published 10/24/2024 Let \(V,W\) be finite dimensional \(G\)-modules over \(\mathbb{C}\) where \(|G| < \infty\). Define the multiplicity o…
Published 10/24/2024 Let \(V,W\) (where \(W \neq 0\)) be finite dimensional \(G\)-modules over \(\mathbb{C}\) such that \(V\) is ir…
Published 10/24/2024 Let \(\rho\) be a finite dimensional rep over \(\mathbb{C}\) of \(G, |G|< \infty\). Define the character.
Published 10/24/2024 Why is the characteristic a well-defined function? How can I show that?
Published 10/24/2024 \(\chi_\rho (1) = {{c1::\dim(V)}}\)
Published 10/24/2024 \({{c1::\chi_{\rho}(g^{-1})}} = {{c2:: \overline{\chi_\rho (g)} }}\)
Published 10/24/2024 Recall the inner product on the function space of a group
Published 10/24/2024 Let \(\rho, \tau\) be irreducible finite dimensional representations over \(\mathbb{C}\) of \(G\), \(|G| <\infty\), w…
Published 10/24/2024 Let \(\mathbb{C}[G] \cong V = \bigoplus^r_{i=1} V^{(i) \oplus m_i}\). Then,1) \(m_i = {{c1:: \dim(V^{(i)}) }}\) so that \(|G| = {{…
Published 10/24/2024 Recall the trivial representation
Published 10/24/2024 Recall the signed representation of \(S_n\) on \(\mathbb{C}\). Why is it a rep?
Published 10/24/2024 Let \(V (=\mathbb{C}^n)\) be the defining rep of \(S_n\). Give an example of a non-trivial, proper submodule.
Published 10/24/2024 Let \(V\) be the left-regular rep of \(S_n\). Provide two examples of proper, non-trivial submodules.
Published 10/24/2024 Recall the definition of the restricted representation.
Published 10/24/2024 Let \(H \leq G\) such that \([G:H]=k\) and let \(\rho :H \to GL(V)\) be an \(n\)-dimensional rep of \(H\). The…
Published 10/24/2024 Given a partition \(\lambda \vdash n\), what is the order of \(YT(\lambda)\)?
Published 10/24/2024 Are Young Tableux strict?
Published 10/24/2024 Recall \(SYT(\lambda)\) (standard young tableux)
Published 10/24/2024 Recall the Young subgroup
Published 10/24/2024 How does the young subgroup act on elements of \(YT(\lambda)\)?
Published 10/24/2024 When are two young tableux equivalent?
Published 10/24/2024 Recall the set of young tabloids of shape \(\lambda\)
Published 10/24/2024 Recall the young permutation module for \(\lambda \vdash n\)
Published 10/24/2024 Recall the size of \(T(\lambda)\)
Published 10/24/2024 What is the young permutation module \(M_\lambda\) equivalent to?
Published 10/24/2024 Let \(t \in YT(\lambda)\). What is a row/column stabiliser of \(\lambda\)?
Published 10/24/2024 Recall the form of the polytabloid labelled by \(t \in YT(\lambda)\)
Published 10/24/2024 \({{c1:: e_{\sigma \cdot t} }}= {{c2:: \sigma \cdot e_ t }}\)
Published 10/24/2024 Recall the definition of a specht module 
Published 10/24/2024 Recall the procedure for determining the dominance relation on tabloids
Published 10/24/2024 If \(t \in SYT(\lambda)\), then \(\text{max}(\text{Pos}(e_t )) = {{c1::[t]}}\)
Published 10/24/2024 The \(e_t\) indexed by \(t \in SYT(\lambda)\) are {{c1::linearly independent}}
Published 10/24/2024 If \(\sigma \in C(t)\), then \(e_{\sigma \cdot t} {{c1::= \text{sgn}(\sigma) e_t }}\)
Published 10/24/2024 Recall the Garnir element
Published 10/24/2024 Recall \(S_{A,B}\)
Published 10/24/2024 Give a basis for the Specht module \(S^\lambda\)
Status Last Update Fields