Notes in Maths::Old::Trigo

To Subscribe, use this Key


Status Last Update Fields
Published 09/16/2024 \(\cos(2a)\)
Published 09/16/2024 Avec \(\tan x\) , \(\cos^{2}(x)=\)
Published 09/16/2024 \(\sin(a+b)=\)
Published 09/16/2024 \(\sin(a-b)=\)
Published 09/16/2024 \(\mathrm{cos}\big(\mathrm{a+b}\big)=\)
Published 09/16/2024 \(\mathrm{cos}\big(\mathrm{a-b}\big)=\)
Published 09/16/2024 \(\mathrm{tan}\bigl(a+b\bigr)=\)
Published 09/16/2024 \(\tan (a-b)=\)
Published 09/16/2024 \(\sin(a)\sin(b)=\)
Published 09/16/2024 \(\cos(a)\cos(b)=\)
Published 09/16/2024 \(\sin(a)\cos(b)=\)
Published 09/16/2024 \(\sin(2a)=\)
Published 09/16/2024 \(\tan(2a)=\)
Published 09/16/2024 Avec \(\cos x\) , \(\sin^{2}({ a})=\)
Published 09/16/2024 Avec \(\cos x\) ,\(\cos^{2}(a)=\)
Published 09/16/2024 Avec \(\cos x\) ,\(\mathrm{tan}^{2}(\mathrm{a})\,=\)
Published 09/16/2024 Euler : \(\sin(x)=\)
Published 09/16/2024 Euler : \(\cos(x)=\)
Published 09/16/2024 \(\cos(\theta + \pi) =\)
Published 09/16/2024 \(\sin(\theta + \pi) =\)
Published 09/16/2024 \(\cos(\pi - \theta) =\)
Published 09/16/2024 \(\sin(\pi - \theta) =\)
Published 09/16/2024 \(\cos\left(\theta + \frac{\pi}{2}\right) =\)
Published 09/16/2024 \(\sin\left(\theta + \frac{\pi}{2}\right) =\)
Published 09/16/2024 \(\cos\left(\frac{\pi}{2} - \theta\right) =\)
Published 09/16/2024 \(\sin\left(\frac{\pi}{2} - \theta\right) =\)
Published 09/16/2024 Soit \(a,b\in \mathbb{R}\) non tous les deux nuls. Alors il existe un unique couple\(\left( M, \varphi \right) \in \mathbb{R}^{+*} \times \left[ 0,2 \…
Published 09/16/2024 \(\sin p- \sin q=\)
Published 09/16/2024 \(\sin p+ \sin q=\)
Published 09/16/2024 \(\cos p- \cos q=\)
Published 09/16/2024 \(\cos p+ \cos q=\)
Published 09/16/2024 Pour tout \(x \in \mathbb{R}\) on a \(\left| \sin x \right| \leq\)
Published 09/16/2024 \(\tan \left( \theta+ \pi \right)=\)
Published 09/16/2024 \(\tan \left(- \theta \right)=\)
Published 09/16/2024 \(\tan \left( \pi- \theta \right)=\)
Published 09/16/2024 \(\left \{ \begin{matrix} \cos \theta= \cos \theta^{ \prime} \\ \sin \theta= \sin \theta^{ \prime} \end{matrix} \right. \Leftrightarrow\)
Status Last Update Fields