AC
AnkiCollab
AnkiCollab
Sign in
Explore Decks
Helpful
Join Discord
Download Add-on
Documentation
Support Us
Notes in
Ensembles
To Subscribe, use this Key
zebra-berlin-louisiana-low-bravo-lion
Status
Last Update
Fields
Published
12/02/2024
[latex]On suppose$\begin{cases}A \cup B = A \cup C\\A \cap B = A \cap C\\\end{cases}$\\Montrer que $B=C$.[/latex]
Published
12/02/2024
[latex]On suppose $g$ et $f$ \textbf{in}jectives, prouver que $g \circ f$ est \textbf{in}jective[/latex]
Published
12/02/2024
[latex]On suppose $g$ et $f$ \textbf{sur}jectives, prouver que $g \circ f$ est \textbf{sur}jective[/latex]
Published
12/02/2024
[latex]On suppose $g \circ f$ \textbf{in}jective, prouver que $f$ est \textbf{in}jective[/latex]
Published
12/02/2024
[latex]On suppose $g \circ f$ \textbf{sur}jective, prouver que $g$ est \textbf{sur}jective[/latex]
Published
12/02/2024
[$$]f(A \cup B) = f(A) \cup f(B)[/$$]
Published
12/02/2024
[latex]Relation entre $f(A \cap B)$ et $f(A) \cap f(B)$[/latex]
Published
12/02/2024
[$$]f^{-1}(A\cup B) = f^{-1}(A) \cup f^{-1}(B)[/$$]
Published
12/02/2024
[$$]f^{-1}(F\setminus B) = E\setminus f^{-1}(B)[/$$]
Published
12/02/2024
[$$]\overline{\bigcup_{i\in I} A_i}[/$$]
Published
12/02/2024
[latex]Montrer que l'application ci dessous est bijective :\begin{align}\Phi : \mathcal{P}(E)& \to \mathcal{F}(E, \{0,1\})\\A& \mapsto \mathds…
Status
Last Update
Fields