Review Note
Last Update: 11/22/2023 02:43 PM
Current Deck: Physikalische Rechenmethoden::Integrale und Ableitungen
PublishedCurrently Published Content
Front
Back
No published tags.
Pending Suggestions
Field Change Suggestions:
Front
Commit #36172\(f(x)=?\)
Substituiere!
Back
Commit #35546
\(x = \sin(u), \; dx=\cos(u) \cdot du\)
\(\int_{\arcsin(a)}^{\arcsin(b)} \cos^2(u) du =\)
\(\frac{1}{2}[\sin(u) \cdot \cos(u) + u]_{\arcsin(a)}^{\arcsin(a)}\)
\(\int_{\arcsin(a)}^{\arcsin(b)} \cos^2(u) du =\)
\(\frac{1}{2}[\sin(u) \cdot \cos(u) + u]_{\arcsin(a)}^{\arcsin(a)}\)
Back
Commit #36172
\(x = \sin(u), \; dx=\cos(u) \cdot du\)
\(\int_{\arcsin(a)}^{\arcsin(b)}\(f'(x)= \cos^2(u)\cos^2(u)\)
\(f(x)du= =\)
\(\frac{1}{2}[\sin(u)\frac{1}{2}[\sin(u) \cdot \cos(u) + u]_{\arcsin(a)}^{\arcsin(a)}\)
\(f(x)