Review Note

Last Update: 04/24/2024 02:36 AM

Current Deck: Topology

Published

Fields:

Premise 1
\((X, \mathcal T) \) is a topological space.
Consequence 1
For every pair of distinct points there are open sets \(U,V\) such that \(x\) contains \(U\) but not \(y\), and \(V\) contains \(y\) but not \(x\):
\[[\forall x,y \in X: x\ne y] [\exists U,V \in \mathcal T] [x \in U \land x \not \in V \land y \in V \land y \not \in U]\]
Consequence 2
Consequence 3
Consequence 4
Consequence 5
Name
\(T_1\) space
Context
Subcontext

Suggested Changes:

Deck Changes (Suggestion to move the Note to the following Deck):

Field Changes:

Tag Changes: