Review Note
Last Update: 04/24/2024 02:36 AM
Current Deck: Topology
Published
Fields:
Premise 1
\((X, \mathcal T) \) is a topological space.
Consequence 1
For every pair of distinct points there are open sets \(U,V\) such that \(x\) contains \(U\) but not \(y\), and \(V\) contains \(y\) but not \(x\):
\[[\forall x,y \in X: x\ne y] [\exists U,V \in \mathcal T] [x \in U \land x \not \in V \land y \in V \land y \not \in U]\]
\[[\forall x,y \in X: x\ne y] [\exists U,V \in \mathcal T] [x \in U \land x \not \in V \land y \in V \land y \not \in U]\]
Consequence 2
Consequence 3
Consequence 4
Consequence 5
Name
\(T_1\) space
Context
Subcontext
Suggested Changes:
Deck Changes (Suggestion to move the Note to the following Deck):
Field Changes:
Tag Changes: