Review Note
Last Update: 08/28/2024 07:49 AM
Current Deck: LA 2
Published
Fields:
Front
Was ist eine Drehung?
Back
für \(\varphi \in \mathbb R\) ist \(D_{\varphi}: \mathbb R ^2 -> \mathbb R^2\)
\(D_{\varphi}(\begin{pmatrix} x_1 \\ x_2\end{pmatrix})= \left( \begin{array}{rrr} cos(\varphi) & -sin(\varphi) \\ sin(\varphi) & cos(\varphi) \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix}\) ist eine Isometrie
\(D_{\frac{\pi}{2}}(x)=\left( \begin{array}{rrr} cos(\frac{\pi}{2}) & -sin(\frac{\pi}{2}) \\ sin(\frac{\pi}{2}) & cos(\frac{\pi}{2}) \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix} = \left( \begin{array}{rrr} 0 & -1 \\ 1 & 0 \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix}= \begin{pmatrix} -x_2 \\ x_1\end{pmatrix}\)
Analog: \(D_{\pi}(x)=-x\) , \(D_{\pi}\) hat Eigenwert \(-1\) aber \(\varphi \notin \pi_{/_{\mathbb Z}}\) hat( keine Vielfache) \(D_{\varphi}\) keine reelen Eigenwerte
\(D_{\varphi}(\begin{pmatrix} x_1 \\ x_2\end{pmatrix})= \left( \begin{array}{rrr} cos(\varphi) & -sin(\varphi) \\ sin(\varphi) & cos(\varphi) \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix}\) ist eine Isometrie
\(D_{\frac{\pi}{2}}(x)=\left( \begin{array}{rrr} cos(\frac{\pi}{2}) & -sin(\frac{\pi}{2}) \\ sin(\frac{\pi}{2}) & cos(\frac{\pi}{2}) \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix} = \left( \begin{array}{rrr} 0 & -1 \\ 1 & 0 \\ \end{array}\right)*\begin{pmatrix} x_1 \\ x_2\end{pmatrix}= \begin{pmatrix} -x_2 \\ x_1\end{pmatrix}\)
Analog: \(D_{\pi}(x)=-x\) , \(D_{\pi}\) hat Eigenwert \(-1\) aber \(\varphi \notin \pi_{/_{\mathbb Z}}\) hat( keine Vielfache) \(D_{\varphi}\) keine reelen Eigenwerte
Tags:
Suggested Changes:
Deck Changes (Suggestion to move the Note to the following Deck):
Field Changes:
Tag Changes: