Review Note
Last Update: 10/05/2024 09:24 AM
Current Deck: 25考研高等数学公式+概念+定理+典例【5.0版】【数二版】【latex精制版】::01高等数学基础知识::04因式分解公式
PublishedCurrently Published Content
问题
因式分解公式6
\(a^{3}-b^{3}=\)________.
\(a^{3}-b^{3}=\)________.
答案
\(a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\)
笔记
扩展
典例
\(\begin{align}
I=\lim _{n \rightarrow \infty} \frac{2^3-1}{2^3+1} \times \frac{3^3-1}{3^3+1} \times \frac{4^3-1}{4^3+1} \times \cdots \times \frac{n^3-1}{n^3+1}
\end{align}\)
I=\lim _{n \rightarrow \infty} \frac{2^3-1}{2^3+1} \times \frac{3^3-1}{3^3+1} \times \frac{4^3-1}{4^3+1} \times \cdots \times \frac{n^3-1}{n^3+1}
\end{align}\)
解析
\(\begin{aligned}
& k^3-1=(k-1)\left(k^2+k+1\right) \\
& k^3+1=(k+1)\left(k^2-k+1\right) \\
& \text { 令 } a_k=k-1, b_k=k^2-k+1=k(k-1)+1 \\
& a_{k+2}=k+1, b_{k+1}=(k+1) k+1=k^2+k+1 \\
& \frac{n^3-1}{n^3+1}=\frac{(n-1)\left(n^2+n+1\right)}{(n+1)\left(n^2-n+1\right)}=\frac{a_n b_{n+1}}{a_{n+2} b_n} \\
& I=\lim _{n \rightarrow \infty} \frac{a_2 b_3}{a_4 b_2} \times \frac{a_3 b_4}{a_5 b_3} \times \frac{a_4 b_5}{a_6 b_4} \times \cdots \times \frac{a_n b_{n+1}}{a_{n+2} b_n} \\
& =\lim _{n \rightarrow \infty} \frac{a_2 a_3}{a_{n+1} a_{n+2}} \times \frac{b_{n+1}}{b_2} \\
& =\lim _{n \rightarrow \infty} \frac{1 * 2 *\left(n^2+n+1\right)}{n(n+1)\left(2^2-2+1\right)} \\
& =\frac{2}{3}
\end{aligned}\)
No published tags.
Pending Suggestions
No pending suggestions for this note.