Review Note

Last Update: 10/05/2024 09:24 AM

Current Deck: 25考研高等数学公式+概念+定理+典例【5.0版】【数二版】【latex精制版】::02函数,极限,连续::02极限::02极限的性质

Published

Fields:

问题
保号性1
设 \(\underset{x \rightarrow x_{0}}{\lim} f(x)=A\), 则若 \(A>0\) (或 \(A<0) \Rightarrow \text{______}\).
答案
设 \(\underset{x \rightarrow x_{0}}{\lim} f(x)=A\), 则若 \(A>0\) (或 \(A<0)\)
\(&nbsp;\Rightarrow \exists \delta>0\), 当 \(x\in \mathring{U}\left( x_0,\delta \right) \)) 时, \(f(x)>0(\) 或 \(f(x)<0)\).
笔记
证明 不妨设 \(A>0\), 取 \(\varepsilon=\frac{A}{2}>0\),
因为 \(\underset{x \rightarrow a}{\lim} f(x)=A\),
所以存在 \(\delta>0\), 当 \(0<|x-a|<\delta\) 时,
\(|f(x)-A|<\frac{A}{2} \text {, 或 }-\frac{A}{2}<f(x)-A<\frac{A}{2},\)
从而 \(f(x)>\frac{A}{2}>0\)."
扩展
典例
解析

Suggested Changes:

Deck Changes (Suggestion to move the Note to the following Deck):

Field Changes:

Tag Changes: