Review Note

Last Update: 12/29/2024 03:13 PM

Current Deck: Physik::T2

Published

Fields:

Front
Wie lassen sich die einzelnen Größen der Formel \(\dot W_V + S_{\partial V} + P_{mech, V}=0 \) berechnen?
Back
  • \(W_V := \int_Vdx^3 w(x) \implies \dot W_V = \int_Vdx^3 \ \partial_tw(x) \),   (wobei \(w(x) = w(\vec x, t)\))
  •  \(S_{\partial V}= \oint_{\partial V} dx^2 \ \vec n \cdot \vec S\)
  • \(P_{mech, V} = \int_V dx^3 \ \vec j \cdot \vec E\)

Tags:

Erhaltungsgrößen/Symmetrien

Suggested Changes:

Deck Changes (Suggestion to move the Note to the following Deck):

Field Changes:

Tag Changes: