Review Note

Last Update: 01/31/2025 07:18 AM

Current Deck: Physik::T2

Published

Fields:

Front
Betrachte \(A_{\mu}=(-\frac{1}{c}\phi, \vec A)^T\) welches \(\Box A_{\mu} = -\mu_0J_{\mu} \) löst. 
Wie muss dann das Potential \(\vec A\) aussehen?

Bonus:
\(A_\mu\), also allgemein.
Back
\[\vec{A}(\vec{x}, t) = \frac{\mu_0c}{4 \pi} \int d^3\vec{y} \, \frac{1}{|\vec{x} - \vec{y}|} \vec{j}\left(\vec{y}, t - \frac{|\vec{x} - \vec{y}|}{c}\right)\]

Bonus:\[A_\mu(\vec{x}, t) = \frac{\mu_0c}{4 \pi} \int \, \frac{j_\mu\big(\vec{y}, t - \frac{1}{c}|\vec{x} - \vec{y}|\big)}{|\vec{x} - \vec{y}|}\, d^3\vec{y}\]

Suggested Changes:

Deck Changes (Suggestion to move the Note to the following Deck):

Field Changes:

Tag Changes: