Review Note
Last Update: 01/26/2025 07:45 PM
Current Deck: Mathématiques::Classiques::Thomas lefèvre
Published
Fields:
Texte
Soit \(p\) un nombre premier. Alors \((X+\bar 1)^p = X^p + \bar 1\).
On a {{c1::\(X^p - X = \displaystyle \prod_{k=0}^{p-1} (X- \bar k)\), donc comme \(x \mapsto x +1\) est bijectif, on a le résultat}}.
Comme {{c2::\((X+\bar 1)^p - X^p - \bar 1 = \displaystyle \sum_{k=1}^{p-1} \begin{pmatrix}{} p \\k \end{pmatrix}X^k = \bar 0\)}}, \(p |\begin{pmatrix}{} p \\k \end{pmatrix}\) pour tout \(k \in [\![ 1, p-1 ]\!]\).
On a {{c1::\(X^p - X = \displaystyle \prod_{k=0}^{p-1} (X- \bar k)\), donc comme \(x \mapsto x +1\) est bijectif, on a le résultat}}.
Comme {{c2::\((X+\bar 1)^p - X^p - \bar 1 = \displaystyle \sum_{k=1}^{p-1} \begin{pmatrix}{} p \\k \end{pmatrix}X^k = \bar 0\)}}, \(p |\begin{pmatrix}{} p \\k \end{pmatrix}\) pour tout \(k \in [\![ 1, p-1 ]\!]\).
Verso Extra
Tags:
Suggested Changes:
Deck Changes (Suggestion to move the Note to the following Deck):
Field Changes:
Tag Changes: