Review Note
Last Update: 01/26/2025 07:45 PM
Current Deck: Mathématiques::Classiques::Thomas lefèvre
Published
Fields:
Texte
Sommes de Gauß. Montrer que pour tout \(a \in \mathbb Z\) premier avec \(p \in \mathbb P\) impair, \({{c1::\displaystyle \sum_{\bar x \in\mathbb Z/p\mathbb Z} \exp\left(\frac {2i\pi ax^2} p\right) = \left( \frac a p \right)\displaystyle \sum_{\bar x \in\mathbb Z/p\mathbb Z} \exp\left(\frac {2i\pi x^2} p\right)}}\).
- Si {{c2::\(a \equiv b^2 \mod p\), \(\left( \frac a p \right) = 1\) et on conclut avec la bijection \(x \mapsto b^{-1}x\)}}.
- Sinon {{c3::on note \(E = \{\bar x^2,\bar x \in (\mathbb Z/p\mathbb Z)^\times\}\) et on remarque que \((\mathbb Z/p\mathbb Z)^\times = E \sqcup \bar aE\) et que \(\displaystyle \sum_{\bar x \in(\mathbb Z/p\mathbb Z)^\times} \exp\left(\frac {2i\pi x} p\right) = -1\)}}.
- Alors {{c4::\(\displaystyle \sum_{\bar x \in E} \exp\left(\frac {2i\pi x} p\right) = -1 - \displaystyle \sum_{\bar x \in \bar aE} \exp\left(\frac {2i\pi x} p\right)\) donc \(\frac 1 2 \displaystyle \sum_{\bar x \in(\mathbb Z/p\mathbb Z)^\times} \exp\left(\frac {2i\pi x^2} p\right) =- 1 -\frac 1 2 \displaystyle \sum_{\bar x \in(\mathbb Z/p\mathbb Z)^\times} \exp\left(\frac {2i\pi ax^2} p\right)\)}}.
Verso Extra
Tags:
Suggested Changes:
Deck Changes (Suggestion to move the Note to the following Deck):
Field Changes:
Tag Changes: