Review Note
Last Update: 01/26/2025 07:45 PM
Current Deck: Mathématiques::Classiques::Thomas lefèvre
Published
Fields:
Texte
Montrer que \({{c3::\varphi(n) = \displaystyle \sum_{d|n} \mu(d) \frac n d}}\), où \(\varphi\) est la fonction d'Euler et \(\mu\) la fonction de Möbius.
- {{c1::On pose \(f * g(n) = \displaystyle \sum_{d|n} f(d)g\left(\frac n d \right)\). On a \(1 * \mu(n) = \delta\) (où \(\delta\) est nulle partout sauf en \(1\)) et \(1 * \varphi = \mathrm{Id}\).}}
- {{c2::Donc \(\mathrm{Id} * \mu = (1 * \varphi)* \mu = \varphi * \delta\).}} Comme {{c2::\(\displaystyle \sum_{d|n} \delta(d)\varphi\left(\frac n d \right) = \varphi(n)\)}}, on a le résultat.
Verso Extra
Tags:
Suggested Changes:
Deck Changes (Suggestion to move the Note to the following Deck):
Field Changes:
Tag Changes: