Review Note

Last Update: 01/28/2025 10:39 AM

Current Deck: Mathématiques::Classiques::Thomas Lefevre::à partager::Réduction des endomorphismes

Published

Currently Published Content


Texte
Soit \(M \in \mathrm M_n(\mathbb R)\). On pose \(\begin{array}{} \varphi_M : & \mathrm M_n (\mathbb R) & \to & \mathrm M_n(\mathbb R) \\ & A & \mapsto & AM\end{array}\). Montrer que \(\varphi_M\) est diagonalisable si et seulement si \(M\) l'est.
  • {{c1::On a pour tout \(P \in \mathbb R[X]\), \(P(\varphi_M) = \varphi_{P(M)}\).}}
  • \(\Rightarrow\) {{c1::\(\pi_{\varphi_M}(\varphi_M) = \varphi_{\pi_{\varphi_M}(M)} = 0\) donc \(\pi_{\varphi_M}(M) = \varphi_{\pi_{\varphi_M}(M)}(I_n) = 0\) et \(\pi_M | \pi_{\varphi_M}\).}}
  • \(\Leftarrow\) {{c1::\(\pi_M(\varphi_M) = \varphi_{\pi_M(M)} = 0\) donc \(\pi_{\varphi_M} | \pi_M\).}}
Verso Extra

Current Tags:

Lefevre_Thomas reduction

Pending Suggestions


No pending suggestions for this note.