Notes in Cell Neuro 2024

To Subscribe, use this Key


Status Last Update Fields
Published 06/02/2024 Three SNARE proteins names and locations
Published 06/02/2024 The four SV cycles are {{c1::kiss-and-run}}, {{c2::ultrafast}}, {{c3::bulk}}, and {{c4::clathrin-mediated}}
Published 06/02/2024 {{c1::clathrin mediated}} endocytosis lasts {{c2::~60s}}, and is also called {{c3::classic endocytosis}}
Published 06/02/2024 {{c1::Kiss and run}} endocytosis lasts {{c2::~1s}} and is where {{c3::fusion pore opens transiently}}
Published 06/02/2024 {{c1::Ultrafast}} endocytosis lasts {{c2::~50-100ms}}, and is {{c3::clathrin independent}}
Published 06/02/2024 {{c1::Bulk}} endocytosis lasts {{c2::tens of s}} and {{c3::follows very strong stimulation}}
Published 06/02/2024 The three SV pools are {{c1::reserve pool}}, {{c2::recycling pool}}, {{c3::readily releasable pool}}
Published 06/02/2024 The {{c1::reserve}} pool makes up {{c2::85%}} of SVs
Published 06/02/2024 The {{c1::recycling}} pool makes up {{c2::10%}} of SVs
Published 06/02/2024 The {{c1::readily releasable}} pool makes up {{c2::5%}} of SVs
Published 06/02/2024 The {{c1::reserve}} pool is {{c2::slow}} (slow/fast)
Published 06/02/2024 What are the steps of SV exocytosis
Published 06/02/2024 Synaptotagmin has {{c1::two}} calcium binding {{c2::C2}} domains
Published 06/02/2024 Synaptotagmin is an abundant {{c1::synaptic vesicle protein}}
Published 06/02/2024 Binding of Ca2+ to {{c1::synaptotagmin}} causes it to interact with the {{c2::presynaptic plasma membrane}} and the {{c3::SNARE protein…
Published 06/02/2024 In {{c1::clathrin mediated}} endocytosis, the {{c2::clathrin coat}} is assembled on the {{c3::cytoplasmic face}} of the plasma membrane…
Published 06/02/2024 The main proteins in clathrin mediated endocytosis are {{c1::clathrin}} and {{c2::dynamin}}
Published 06/02/2024 {{c1::image-occlusion:rect:left=.1794:top=.9329:width=.1283:height=.0525:oi=1}}{{c2::image-occlusion:rect:left=.4545:top=.9329:width=.1283:height=.055…
Published 06/02/2024 {{c1::electrical}} synapses are {{c2::fast}} and {{c3::reliable}}
Published 06/02/2024 {{c1::chemical}} synapses are {{c2::slow}} and {{c3::variable}}
Published 06/02/2024 {{c1::electrical}} synapses have {{c2::two}} way information flow, with cells acting {{c3::similarly}}
Published 06/02/2024 {{c1::chemical}} synapses have {{c2::one}} way information flow, with cells acting {{c3::differently}}
Published 06/02/2024 {{c1::electrical}} synapses are {{c2::simple}}
Published 06/02/2024 {{c1::chemical}} synapses are {{c2::complex}}
Published 06/02/2024 {{c1::electrical}} synapses use {{c2::gap junctions}}
Published 06/02/2024 {{c1::gap junctions}} can syncronise action potentials across cells
Published 06/02/2024 {{c1::gap junctions}} do not allow passage of {{c2::large}} molecules
Published 06/02/2024 {{c1::image-occlusion:rect:left=.3293:top=.0409:width=.1176:height=.0432:oi=1}}{{c2::image-occlusion:rect:left=.0475:top=.1057:width=.2892:height=.058…
Published 06/02/2024 {{c1::image-occlusion:rect:left=.3038:top=.0285:width=.1916:height=.0648:oi=1}}{{c2::image-occlusion:rect:left=.2927:top=.26:width=.2229:height=.0556:…
Published 06/02/2024 {{c1::image-occlusion:rect:left=.1086:top=.0162:width=.2404:height=.0864:oi=1}}{{c2::image-occlusion:rect:left=.5714:top=.0193:width=.2712:height=.067…
Published 06/02/2024 In the {{c1::quantal}} model, postsynaptic responses are typically made up of the summation of smaller {{c1::}} responses
Published 06/02/2024 Each {{c1::quantal}} reponse in the post synaptic response to the release of neurotransmitter contained within {{c2::a single}} synaptic&nbs…
Published 06/02/2024 The summation of {{c1::quantal}} responses is probabilistic because it depends on the probability of release of a single {{c2::synaptic vesi…
Published 06/02/2024 {{c1::Pv}} is small when there is {{c2::no}} presynaptic AP
Published 06/02/2024 {{c1::Pv}} transiently becomes {{c2::larger}} (larger/smaller) when a presynaptic AP arrives
Published 06/02/2024 Ohm law for neuroscience is {{c1::Im = g(Vm - Eion}}
Published 06/02/2024 Vm - Eion is the {{c1::electrical driving force}}
Published 06/02/2024 In {{c1::current}} clamp, Vm is {{c2::fixed}}, while Im is {{c3::measured}}
Published 06/02/2024 In {{c1::voltage}} clamp, Vm is {{c2::measured}}, while Im is {{c3::fixed}}
Published 06/02/2024 {{c1::Permeation}} is the {{c2::ease of passage}} of ions through a {{c3::channel}}. It determines the {{c4::amount}} of {{c5::current}…
Published 06/02/2024 {{c1::Gating}} is how a channel {{c2::opens and closes}}. It determines how much {{c3::time}} the channel is {{c4::open}}
Published 06/02/2024 The {{c1::larger}} (larger/smaller) the conductance is for an ion, the more {{c2::effectively}} it drives Vm to the {{c3::Nernst p…
Published 06/02/2024 {{c1::image-occlusion:rect:left=.3443:top=.3577:width=.0482:height=.3848:oi=1}}{{c2::image-occlusion:rect:left=.4306:top=.2855:width=.0892:height=.489…
Published 06/02/2024 The main {{c1::excitatory}} neurotransmitter is {{c2::glutamate}}
Published 06/02/2024 The main {{c1::inhibitory}} neurotransmitter is {{c2::GABA}}
Published 06/02/2024 {{c1::Glycine}} is {{c2::inhibitory}} and has {{c3::glycine}} receptors
Published 06/02/2024 {{c1::Glutamate}} targets {{c2::four}} receptors: {{c3::AMPA}}, {{c6::Kainate}} {{c4::NMDA}}, and {{c5::mGluR}}
Published 06/02/2024 {{c1::GABA}} targets {{c2::two}} receptors: {{c3::GABAA}} and {{c4::GABAB}}
Published 06/02/2024 {{c1::AMPA}} receptors have {{c2::four}} transmembrane domains and {{c2::four}} subunits.
Published 06/02/2024 In AMPA receptors, {{c1::gluatamate}} binds to {{c2::each subunit}}, which causes a {{c3::cation}} channel to open.
Published 06/02/2024 {{c1::AMPA}} channels are the {{c2::most}} common form of {{c3::fast}} excitation in the brain.
Published 06/02/2024 {{c1::AMPA}} receptors get {{c2::desensitised}} with {{c3::continuous}} glutamate application.
Published 06/02/2024 Most {{c1::AMPA}} receptors have a {{c2::linear}} I/V plot.
Published 06/02/2024 {{c1::NMDA}} receptors are permeable to {{c2::sodium and calcium}}.
Published 06/02/2024 {{c1::NMDA}} receptors require a {{c2::co-agonist}} which is {{c3::glycine}} or {{c4::D-serine}}
Published 06/02/2024 NMDA receptors have {{c1::four}} subunits
Published 06/02/2024 The NMDA receptor has two {{c1::GluN1}} and two {{c2::GluN2}} subunits
Published 06/02/2024 {{c1::Glycine}} or D-serine binds to the {{c2::GluN1}} subunit, while {{c3::glutamate}} binds the the {{c4::GluN2}} subunit in NMDA rec…
Published 06/02/2024 {{c1::NMDA}} receptors have a {{c2::J shaped}} I/V plot
Published 06/02/2024 {{c1::NMDA}} receptors have a {{c2::magnesium block}} at rest that requires {{c3::depolarisation}} to expel. 
Published 06/02/2024 {{c1::NMDA}} receptors are slower than {{c2::AMPA}} receptors
Published 06/02/2024 Different subunits of {{c1::NMDA}} have different degrees of {{c2::magnesium block}} which affects how fast they {{c3::open}}
Published 06/02/2024 {{c1::Glycine}} is the main inhibitory transmitter in the {{c2::spinal cord}}
Published 06/02/2024 The {{c1::Glycine}} receptor is a {{c2::chloride}} channel
Published 06/02/2024 Glycine receptors have {{c1::four}} alpha and {{c2::one}} beta subunits
Published 06/02/2024 {{c1::GABA}} is the main inhibitory transmitter in the {{c2::brain}}
Published 06/02/2024 The {{c1::GABA}} receptor is a {{c2::chloride}} channel
Published 06/02/2024 {{c1::GABA}} is formed from {{c2::glutamate}} via {{c3::GAD}}
Published 06/02/2024 The {{c1::GABAA}} receptor has {{c2::five}} subunits, each with {{c3::four}} TM domains
Published 06/02/2024 60% of GABAA receptor subunits are {{c1::2a1, 2b2, 1 gamma2}}
Published 06/02/2024 GABA usually binds to the {{c1::beta}} subunit of GABAA receptors
Published 06/02/2024 GABAB receptors are {{c1::G-protein coupled}}
Published 06/02/2024 GABAB receptors are linked to {{c1::Gi and Go}} and {{c2::inhibit}} anedylate cyclase and {{c3::reduce}} cAMP
Published 06/02/2024 GABAB activation causes pre and post synaptic inhibition through inhibition of {{c1::voltage gated calcium channels}} or activation of …
Status Last Update Fields