Notes in Topology

To Subscribe, use this Key


Status Last Update Fields
Published 04/24/2024 If we have [object] with [properties], it is [definition] if:
Published 04/24/2024 Given (so and so) we may do (such and such) as follows:
Published 04/24/2024 (property 1) is the same as
Published 04/24/2024 [Sample Generic (Reverse)]
Published 04/24/2024 idk I've never used this one but it might be useful
Published 04/24/2024 Given [conditions]
Published 04/24/2024 \(f:X\to Y\) is a function\(B \subseteq Y\)
Published 01/24/2024 test
Published 04/24/2024 \(X\) is a set\( \mathcal T \in \mathcal P (X)\) such that
Published 02/11/2024 Two sets, $A$ and $B$, have the same $\textbf{cardinality}$ if and only if   
Published 04/24/2024 \(A\) and \(B\) are sets
Published 04/24/2024 \((X ,\mathcal T)\) is a topological space\(p \in X\)
Published 04/24/2024 \(X \) is a topological space
Published 04/24/2024 \(Y \hookrightarrow X\) are topological spaces\(C = \set{S_i}_{i\in I}\) is a collection of subsets of \(X\)
Published 04/24/2024 \(Y \hookrightarrow X\) are topological spaces\(C = \set{S_i}_{i\in I}\) is a collection of open subsets of \(X\)
Published 04/24/2024 \(Y \hookrightarrow X\) are topological spaces\(C\) is an open cover of \(Y\)
Published 02/11/2024 \(X\) is a finite set. 
Published 04/24/2024 \(X\) is a set.
Published 04/24/2024 \(X\) is a set.
Published 04/24/2024 \(X\) is a set.
Published 04/24/2024 Standard definition:\([\forall y \in y][\exists x \in X][f(x) = y]\)
Published 04/24/2024 Standard definition; \(f\) is left-unique:\([\forall x_1,x_2 \in X][f(x_1)=f(x_2) \implies x_1=x_2]\)
Published 04/24/2024 Let \(f:X\to Y\) be a function and\(A\subseteq X\) 
Published 04/24/2024 \(A \) and \(B \) are sets
Published 04/24/2024 \(A \) and \(B \) are sets
Published 04/24/2024 Let \(I \) be an indexing set Let \(\langle S_i \rangle_{i \in I} \) be a family of sets indexed by \(I\)
Published 04/24/2024 Let \(I \) be an indexing set Let \(\langle S_i \rangle_{i \in I} \) be a family of sets indexed by \(I\)
Published 04/24/2024 \(f:X\to Y\) is a function
Published 04/24/2024 Let \(\sim \) be a homogenous binary relation over a set \(A\)
Published 04/24/2024 Let \(\sim \) be an equivalence relation on a set \(S\)
Published 04/24/2024 Standard Definition: \(S \in \mathcal T\)
Published 04/24/2024 The smallest closed set containing \(A\):\(\overline A = \bigcap_{A \subseteq S \subseteq C} S\)
Published 04/24/2024 The collection of subsets \(U\) of \(\mathbb{R}^n\) fulfilling the property that, for all \(p\in U\), there exists and open b…
Published 04/24/2024 \(X\) is an arbitrary set
Published 04/24/2024 \(X\) is a set
Published 04/24/2024 \(X\) is a set
Published 04/24/2024 \(\{X_i\}_{i \in \mathbb N}\) is a countable family of countable sets 
Published 04/24/2024 For any set \(X\), \(|X| < |\mathcal P (X)|\)
Published 04/24/2024 \(A\) and \(B\) are sets
Published 04/24/2024 \(A\) and \(B\) are sets
Published 04/24/2024 \(X\) is a set
Published 04/24/2024 A point \(p\in X\) such that every open neighborhood \(U \) of \(p\) contains some point of \(A\) distinc…
Published 04/24/2024 A point \(p \in A\) such that \(p\in A\) but \(p\) is not a limit point of \(A\).
Published 04/24/2024 \(A\) is equal to its own closure: \(\overline A = A\)
Published 04/24/2024 \((X , \mathcal T)\) is a topological space\(S \subset \mathcal T\)
Published 04/24/2024 \(S\) is a basis for some topology on \(X\)
Published 04/24/2024 The topology on \(\mathbb R \) consisting of all sets of the form \([a,b)\)
Published 04/24/2024 \(T,T'\) are topologies on the same underlying set.
Published 04/24/2024 \(T,T'\) are topologies on the same underlying set.
Published 04/24/2024 The topology \(\mathcal T\) on the set \(\mathbb{R}\cup \{0',0''\}\) such that:
Published 04/24/2024 The topology \(\mathcal T\) on the upper half plane \(\{(x,y) \in \mathbb{R}^n| x,y \in \mathbb{R}, y \ge 0\}\) such that:
Published 04/24/2024 The topology on \(\mathbb Z \) whose basis elements are arithmetic progressions
Published 04/24/2024 \(S\) is a basis for \(\mathcal T\)
Published 04/24/2024 \((X , \mathcal T)\) is a topological space\(S \subset \mathcal P (X)\)
Published 04/24/2024 \((X , \mathcal T)\) is a topological space\(S \subset X\)
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space.
Published 04/24/2024 \((X, \mathcal T) \) is a topological space\(P\) is a topological property
Published 04/24/2024 \((X, \mathcal T) \) is a topological space\(A \subset X\)
Published 04/24/2024 \((X, \mathcal T) \) is a topological space
Published 04/24/2024 \((X, \mathcal T) \) is a topological space
Published 04/24/2024 \((X, \mathcal T) \) is a topological space\(p \in X\)A collection of open sets \(\{U_\alpha\}_{\alpha \in \lambda}\) such that,
Published 04/24/2024 \((X, \mathcal T) \) is a topological space
Published 04/24/2024 \((X, \mathcal T) \) is a topological space\(A \subset \mathcal P(X)\) is a collection of subsets of \(X\)
Published 04/24/2024 \((X, \mathcal T) \) is a topological space
Published 04/24/2024 \((X, \mathcal T) \) is a topological space\({\cal B} = \{ B_\alpha\}_{\alpha\in\lambda}\) 
Published 04/24/2024 \((X, \mathcal T) \) is a topological space \(\mathcal B = \{ B_\alpha\}_{\alpha\in\lambda}\) is a cover of \(X\)\({\cal C} = \{ C…
Published 04/24/2024 The preimage of every open set in \(Y\) is open in \(X\)
Published 04/24/2024 \(X,Y \) are topological spaces
Published 04/24/2024 \(X,Y \) are topological spaces
Published 04/24/2024 \(f\) is bijective and \(f^{-1} \) is continuous
Status Last Update Fields