Notes in lecture02 - quotient modules

To Subscribe, use this Key


Status Last Update Fields
Published 10/25/2023 When is a subset of R an R-Module
Published 10/25/2023 If M {{c2::is a free R-module of rank (number of elements in basis) \(n < ∞\)}}, then {{c1::\(M \cong R^n\)}}
Published 10/25/2023 Submodule criterion
Published 10/25/2023 R-submodule of \(M\)
Published 10/25/2023 What do the submodules of \(R\) as an \(R\)-module look like 
Published 10/25/2023 How to find submodules using a homomorphism
Published 10/25/2023 If \(M\) is an \(R\)-module and \(N\) is a {{c1::submodule}}, then the quotient \(M/N\) has an \(R-module\) structure given b…
Published 10/25/2023 First Isomorphism theorem for modules
Published 10/25/2023 Suppose \(N⊂M\) is a submodule. What is a good way to think about \(M/N\)?
Published 10/25/2023 submodule generated by a set
Published 10/25/2023 characterizatio of \(<A>\)
Published 10/25/2023 The R-module homomorphism \(α:N→N_1\) induces a homomorphism \(α_*\)...
Published 10/25/2023 The R-module homomorphism \(α:M→M_1\) induces a homomorphism \(α^*\)...
Published 10/25/2023 We know that for modules M,N \(Hom_R(M,N)\) is an abelian group. Describe three ways that \(Hom_R(M,N)\) could have a module structure …
Published 10/25/2023 R-S-bimodule
Published 10/25/2023 R-bimodule
Published 10/25/2023 example: bimodules over subsets of R
Published 10/25/2023 If \(M\) {{c1::is a left R-module}} and N is {{c1::a R-S-bimodule}}, then \(Hom_{R(left)}(M,N)\) is {{c2::a right S-module}} by the formula
Published 10/25/2023 If \(M\) is {{c1::a R-S-bimodule}} and N is {{c1::a left R-module}}, then \(Hom_{R(left)}(M,N)\) is {{c2::a left S-module}} by the formula
Published 10/25/2023 bilinear map of modules
Published 10/25/2023 Is a bilinear map R-linear?
Published 10/25/2023 Universal property of free modules
Published 10/25/2023 Construction of the tensor product of R-modules M,N (sketch)1. Take a free module with basis \(M×N\), that is \[F = \bigoplus_{M×N}R\]2. Tak…
Status Last Update Fields