Notes in 09常用的积分曲线

To Subscribe, use this Key


Status Last Update Fields
Published 10/05/2024 三次方抛物线\(y=a x^{3}\text{图象怎么画}\)
Published 10/05/2024 半立方抛物线\(y^{2}=a x^{3}\text{图象怎么画}\)
Published 10/05/2024 概率曲线\(y=e^{-x^{2}}\text{图象怎么画}\)
Published 10/05/2024 \(\text { 箕舌线: } y=\frac{8 a^{3}}{x^{2}+4 a^{2}}\text{图象怎么画}\)
Published 10/05/2024 \(\text { 蔓叶线: } y^{2}(2 a-x)=x^{3}\text{图象怎么画}\)
Published 10/05/2024 \(\text { 笛卡尔叶形线:直角坐标方程 } x^{3}+y^{3}-3 a x y=0 \text {; }\)\(\text { 参数方程 } x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}\text{图像怎么画}\)
Published 10/05/2024 \(\text { 星形线(内摆线的一种): 直角坐标方程 } x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} \text {; }\)\(\text { 参数方程 } x=a \cos ^{3} \theta, y=a \sin ^{3} \thet…
Published 10/05/2024 \(\text { 摆线: } x=a(\theta-\sin \theta), y=a(1-\cos \theta)\text{图像怎么画}\)
Published 10/05/2024 心形线 (外摆线的一种)①\(\text{直角坐标方程 } x^{2}+y^{2}+a x=a \sqrt{x^{2}+y^{2}} \text {; }\)\(\text { 极坐标方程 } r=\)\(a(1-\cos \theta)\theta \in[0,2 \pi], a>0\tex…
Published 10/05/2024 \(\text { 阿基米德螺线: } r=a \theta\text{图像怎么画}\)
Published 10/05/2024 \(\text { 对数螺线 }: r=\mathrm{e}^{a \theta}\text{图像怎么画}\)
Published 10/05/2024 \(\text {双曲螺线: } r \theta=a\text{图像怎么画}\)
Published 10/05/2024 伯努利双纽线\(\text{图像怎么画}\)\(\text {蓝色曲线的直角坐标方程为 }\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) \text {, }\)\(\text {极坐标方程为 }\)\(r^{2}=a^{2} \…
Published 10/05/2024 三叶玫瑰线\( \text{蓝色曲线方程为 } r=a \cos 3 \theta\)\(\text{黑色曲线方程为}r=a \sin 3 \theta\text{图像怎么画}\)
Published 10/05/2024 四叶玫瑰线\(\text{蓝色曲线方程为 } r=a \cos 2 \theta\text{图像怎么画}\) \( \text{黑色曲线方程}为r=a \sin 2 \theta\text{图像怎么画}\)
Published 10/05/2024 积分曲线汇总表格 表达式图像 \(y=a x^{3}\text{图象怎么画}\)____ 半立方抛物线\(y^{2}=a x^{3}\text{图象怎么画}\)____ 概率曲线\(y=e^{-x^{2}}\text{图象怎么画}\)____ \(\text …
Status Last Update Fields